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1. Phys. A Math. Gen. 27 (1994) 5467-5483. Primed in the UK 

Interference of directed paths 

St6phane Rouxt and Antonio Conigliots 
Labomoire de Physique et Mecanique des Milieux H6t6mg*nes, URA CNRS 857. &ale 
Superieure de Physique et Chimie Induslhelles, 10 rue Vauquelin, 75231 Puis Cedex 05, 
France 

Received 13 March 1994 

Abstract. We study the problem of interference between directed paths in two dimensions, on a 
Euclidean square laaice. and on a hierarchical structure. The connection behveen this problem 
and directed polymers in a random medium at zero temperature is presented through a direct 
construction. This mapping leads to a quantitative description of the exponential vanishing of 
the amplitude as a function of distance travelled within the medium. A phase transition occuring 
for a small concentration of impurities, which has been reported in the past, is analysed using 
a direct numerical study. Although we cannot reach a definitive conclusion. the critical point 
seems to vanish in the thermodynamic limit. A renormalization argument is proposed m ilCcomt 
for this effect. Finally, the same problem treated on a hierarchical lattice is shown to give rise 
to pathological behaviour for large disorder. For small disorder, the connection with directed 
polymers is recovered. 

1. Introduction 

The problem of the conformation and energy scaling of directed polymers in random media 
at zero temperature is a topic which has received considerable attention since an analytic 
solution was proposed by Kardar, Parisi and Zhang [ 11 for the two-dimensional case. The 
solution of [l] lies on a mapping onto a nonlinear Langevin equation with noise (hereafter 
referred to as the KPZ equation). Since then, a number of applications in various fields have 
been proposed to be described by such a model. 

However, in most cases considered, the noise was real and positive. Extensions 
of the initial model to situations where the noise was complex have been studied in 
particular by Medina et al [2]. The motivation for such studies was the relevance of 
this problem for different applications. Examples include Aaronov-Bohm oscillations in 
hopping conductivity 131, tunnel hopping in disordered systems 141, interference of directed 
path in quantum localization problems 151, high-temperature limit for spin glasses [6], . . . . 

Phase diagrams for the directed walks with complex random weights have been 
considered theoretically in the limit of a large space dimensions by Cook and Derrida 
on a Cayley tree [7] using the simple random sign case, and by Goldschmidt and Blum 
in the general case using a variational method expected to be exact in the limit of infinite 
space dimensions [SI. For positive random weights, the directed polymer problem on a 
hierarchical lattice has first been consider by Derrida and Griffiths [9], and more recently 
by Medina and Kardar [lo]. 
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Zhang [ I I ,  121 has proposed a different approach to the problem through a mapping 
onto a singular Langevin equation. 

We study such a problem in the simple limit where the phases can only assume two 
values: 1 with probability (1 - n) and -1 with probability n. We propose different 
results on this problem including a direct mapping onto a Burgers equation studied in [I], a 
study of an eventual second-order phase transition reported initially in [3,4] and discussed in 
[5,13,14], and which seems to vanish when the system size diverges as suggested in [5,13- 
151, a renormalization argument which supports the previous conclusion, and a hierarchical 
lattice formulation which shows the relation of this problem with a random polymer case 
with real positive noise, and which exhibits a pathological behaviour when K is close to 4. 

2. Statement of the problem 

Let us consider a square lattice whose bonds i are attributed random weights vi from a 
bimodal distribution: q = 1 with probability 1 - 71 and q = -1 with probability I.  To 
any path P we assign a phase #(P)  equal to the product of 9 along the path 

Due to the particular choice of q, + can only assume two values f l .  The principal ax= of 
the square lattice are oriented at an angle n /4  with respect to a coordinate system (x, y), 
From now on, we will only consider paths lying on the lattice which are directed along 
the y-axis. Figure 1 illustrates the geometry used in this study. From each site i in the 
network, located at a distance y from the x-axis, there are N = 2Y different directed paths 
connecting i to the x axis. Among them, a number N: of paths are such that @ ( P )  = 1 ,  
and N; have @(P)  = -1. We introduce the notation n: for the density of positive paths 
connecting i to the x-axis 

and 01' I -  - ( n t  - n;). 
The problem we address is to study the statistical properties of 01 values as a function 

of various parameters such as the distance y or the probability n. 
Numerically, the computation of the 01 field in the lattice is straightforward. The 

directedness of the paths allows us to formulate the problem in a simple transfer-matrix 
way. Noting that each directed path from i to the x-axis has to go through one of the two 
neighbours of i, j and k, uyi has the simple form 

where and 
The lattice used extends over a distance L, along the x-axis and we implemented 

periodic boundary conditions. The length of the lattice along the y-axis is denoted L,. 
The computation is initialized to ai = 1 along the x-axis and then LY are computed along 
lines parallel to x using (3). Moreover, as we will see below, the average of ILY] decreases 
exponentially with y. Thus, we rescaled all the values of 01 along each line so that the 
maximum value is equal to 1. The rescaling factor was recorded so as to revert to the 
actual value of LY whenever needed. The rescaling procedure is simply to be considered 
here as a convenient way to preserve the desired accuracy with no consequence for the 
results. 

are the q values assigned to bonds j - i and k - i, respectively. 



Interference of directed paths 

y ?  

5469 

I X 

Figure 1. Statiing from any site on the square lattice we consider the set of directed paths 
which end on the x-axis.  Periodic boundary conditions are implemented in the x-direction. 

3. Relation with KPZ equation 

In order to establish the connection between the problem innoduced in the previous section 
and the Kpz equation, we use a direct argument, different from the one used by Medina et 
al [2] who pointed out the analogy between the average value of the 2mth power of Nor 
and the statistics of m attracting particles in a one-dimensional medium. 

Our starting point is (3). Due to the geometry of the lattice we use, we first iterate (3) 
twice so that we can relate the value of a(x, y + 2) to 01(x +a, y )  with a = - I ,  0 and 1. 
We can express such a dependence in the following form: 

O 1 ( x , Y + 2 ) - O 1 ( x , y ) = ~ ( o r ( x + 1 , Y ) - 2 o r ( x , Y ) + o r ( X - l 1 , Y ) )  
- (a -~&+ l , y ) + a o o r ( x , ~ ) + a ~ o r ( x - l , y ) ) .  (4) 

Only the three coefficients a-],  a0 and a1 are dependent on the value of the q parameters 
in the six bonds which connect (x, y + 2) to the three sites (x + a, y ) .  a-! and a] can 
take the values 0 and 4 and a0 can amount to 0, 4 or 1. Equation (4) can be seen as the 
discretization of a continuous equation which can be written as 

where A a (a-I + + a] ) .  We have neglected in this equation the non-local nature of the 
last term in the discretized form (4). In fact, we could also have made a Taylor expansion 
of 01 and thus added some additional contribution in acu/ax. However, these terms should 
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not be determinant for the scaling properties of 01. Indeed the scale of the non-locality is 
one lattice unit, and the diffusion term should dampen short-scale fluctuations of 01. This 
last factor can be decomposed as the sum of a constant term plus a fluctuating part with 
zero mean: A = ;i + 6 A .  Therefore, equation (5) is a linear Burgers equation with a 
multiplicative noise 

S Rowr and A Coniglio 

Such an equation has been solved by Kardar, Parisi and B a n g  [ l ]  using a change of variable 
fi = log@) so as to obtain a nonlinear diffusion equation with an additive noise 

It should be noted that using a similar starting point. but different approximations, Zhang 
[IO] has proposed a mapping from the complex directed problem onto a different nonlinear 
Langevin equation with a singular term of the form log(lap/axl) in addition to (7). 

Kardar, Parisi and Zhang [ l ]  have shown that (7) gives rise to a non-trivial scaling 
property on the fluctuations of p as a function of y. i.e. 

in two dimensions, where @ is a scaling function which is constant for small argument 
( @ ( x )  - xo for x << I )  and which scales as @ ( x )  - x-' for x >> 1. For the specific 
problem studied in this paper, Medina et a1 [Z] have recovered essentially the same 
result using a different argument. The mapping onto a Langevin equation has initiated 
some debate still open in the literature [2,9.10]. The scaling form (8) can be rewritten 
introducing a correlation length which grows as y2l3. This correlation length reflects the 
extent of transverse fluctuations of the paths. On the basis of numerical simulations and 
renormalization argument, Zhang [9] found a power-law increase of the correlation length 
with a different exponent (f).  This result motivated his development of a new (singular) 
Langevin equation for describing such systems 1101. Gelfand [ 161 reported the result of 
numerical simulations in the field which favoured the results of Medina et al [Z]. 

The constant x which appeared in (6) becomes simply a constant drift in (7) and thus 
can be eliminated by a suitable change of reference (,9 + ,B - x y ) .  Referring to the 
definition of ,3, this leads to an exponential decay of the average value of I f f 1  a e-YIt1. Let 
us now try to estimate 611. The constant can be computed easily to amount to 

- 
A = 4Z(l - a )  (9) 

by taking into account all possible configurations of the six bonds involved in the derivation 
of (4) and setting dy = I .  In order to obtain an estimate of ( we neglect the noise term in 
(4) and consider the case of an invariance of 01 along the x-axis (this form is the one for 
which the relaxation distance is the largest). Thus we look for a solution of (4) with no 
noise, using (Y = Ke-YIh. Inserting this expression in (4), we obtain 

(10) 
- 

e-2/<l = 1 - A ,  

Using the expression (9), we finally obtain 

5,l =-1/ log(~l -Z7r~) .  
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F l y r e  2. Numerical estimate of the relaxation scale as a function of r. These datahave been 
estimated on a Euclidean square lattice for a system of width L, = 500 and length L, = IO5 
for each point. The theoretical expectation (equation (11)) is shown as a dotted curve. 

In particular, for small x, can be simplified to 511 % 1/2x. 
Figure 2 shows the numerical estimate of 611 as a function of x together with (11). The 

agreement is good for small x values. For x close to 4, taking into account the average 
value of A gives an estimate of (11 which is underestimated by a large amount. The reason 
for this deviation is to be looked for in the fact that the fluctuations in the noise dominate 
the average level. Indeed we have estimated the damping length considering a constant a, 
which is legitimate for small x, but which clearly breaks down for x close to &. We will 
come back on this point below. 

As a direct consequence of this mapping, we check the scaling of the fluctuations of 
,9 = log(la1) with y. Figure 3 shows such an evolution for two different values of x: 0.5 
and 0.05. The system size is L, = 10000, and L, = 10000 with an average over 1000 
realizations. We do not see a simple power-law behaviour. Past an initial transient regime, 
the apparent exponent increases very slowly with the system size. The exponent b, such 
that 

when estimated for distances y > IO3, gives b % 0.31, which is consistent with the expected 
value b = 4 (equation (8)). A similar study on smaller system sizes has been reported by 
Medina et al [Z] for x = 1 and they also observed a slow approach to the f exponent for 
y > lo3. Our result is also consistent with the numerical result of Gelfand [16] on the same 
problem. 

For x = 0.05, one obtains essentially the same result as for x = 0.5. The only major 
difference is the absence of a bump for small scales, which in any case is irrelevant for the 
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Figure 3. Log-log plot of h e  Ruciuations ( (p2)  - (8)2) of 6 = log(/cl) versus y for n = 0.5 
(dotted curve) and for x = 0.05 (full curve). A best fit of slope 0.63 is shown as a chain line. 

asymptotic scaling. One surprising coincidence is to be noticed, however: the magnitude 
of the fluctuation is almost identical for these two values of x .  We have no explanation to 
account for this observation. 

4. Noise-free evolution 

Starting from (4). let us consider the evolution of a in the absence of noise, i.e. turning the 
coefficients a-1, ag and a, into their respective expectation values: 

a ( x .  y + 2) - a ( x ,  Y) = $ (a (x  + 1, Y) - W X ,  Y) + a ( x  - 1, Y)) 
- x(1 - n) (@(X + 1,  Y) + W x ,  y) + a(x - 1, Y)) . (13) 

Let us look for solutions of the latter equation as dampened exponentials of the form 
a(x, y) c( e*YeilU. Inserting this particular form in (13) gives 

e-= = (4 - 2n(l - z))(cos(k) + 1). (14) 

We have already considered this equation in the case k = 0, so as to obtain the rate of 
decay of IaI, in equation (10). From equation (14), we see that there always exists a real root 
s for all wavenumbers k. The critical damping is always reached for an a function which 
oscillates with a period of two lattice spacings. In the particular case n = f all modes are 
at the critical damping. However, in this discussion, we only consider the noise-free case. 
In the original problem (4) fluctuations may thus induce either an exponential relaxation 
or a dampened oscillatory behaviour in y. Upon averaging along x or y (in a steady-state 
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regime) the dampened oscillatory behaviour yields naturally a zero-valued order parameter 
C, whereas an exponential relaxation leads to a non-zero value. 

Moreover, upon a rescaling of the y-axis, all values of IT apart from 0 and 4 can be 
mapped onto each other, using the reduced variable y/c11. But in this transfomtion, one 
should note that the noise term is not invariant. 

Let us also note one particular feature of (13) in the case where x = 4. In the noise-free 
equation, there is a perfect cancelation of the RHS so that it reduces to 

a!@, y + 2) = 0. (15) 

Thus, in this case, the noise is fundamental. Moreover, the coarse-grained local noise we 
have introduced in (5) becomes illegitimate, since it provides essentially the spatial coupling 
in the 01 field. Otherwise, we would expect independent random walk evolutions for each 
x ,  and thus b = $ in (12). Figure 6 shows a map of the spatial distribution of ‘plus’ and 
‘minus’ sites for x = 4. We indeed see on the figure that no more long-range structure can 
be found, in agreement with (15) which states that after a distance of 2 along the y-axis, 
no memory of the previous state is kept on average. 

The above considerations are specific to the case x = 4. As soon as n # 4, equation 
(5) should hold, and thus we should recover the properties recalled above concerning the 
fluctuations of p. There may lie the reason why the approach to the expected b exponent 
is so slow. 

5. Phase transition for low ?r 

Apart from the scaling of Ia!I and its statistical fluctuations, another remarkable feature of 
this problem has been reported by Nguyen et a l [ 3 , 4 ] .  These authors have observed that for 
large n, positive and negative 01 occured with the same probability, whereas for small n, 
a! is mostly positive. A critical value n, which separates these two regimes was estimated 
to be zc M 0.05. Although the authors have proposed a rough argument which suggested 
a first-order phase transition, the numerical result they have obtained suggested that the 
nansition was of second order. The argument proposed by Nguyen et al was discussed in 
details by Shapir and Wang [5] who suggested that the phase transition might simply be a 
slow cross-over which would vanish for large system size. In a later work [13],  Shapir et 
al have performed a series expansion to analyse this transition. Although the system sizes 
considered were rather small, they did not observe such a transition. However, due to the 
limitation in size, they did not consider as reliable the data for x < 0.10. A small review 
of this question is given in [14]. A numerical study of this question has been performed 
by Medma and Kardar [15] and they found a very slow shift of the critical nc toward 0 for 
large system sizes. 

Let us note that for x larger than 0.5, the following transformation a! --t (-1)Yw maps 
the problem to n -+ (1 - n). Therefore, we will restrict our study to the case 0 < x < 0.5. 

Figures 4(a) and 4(b)  show the spatial distribution of sites for which a! < 0 in two 
512 x 512 lattices for x = 0.04 and n = 0.06, Such pictures support qualitatively the 
occurrence of a transition. We will see, however, that a more quantitative study shed some 
doubts on this transition in the thermodynamic limit. 

A convenient order parameter to study this transition is C defined from the distribution 
function f(01) of 01 
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(1c=O.060) 

( b )  

Figure 4. Map of the sites i (shown in black) for which ai c 0 on a 512 x 512 I a ~ c e  Periodic 
b and c are implemented lakerally as in figure I .  Values of x %e respectively 0.04 and 0.06 in 
(0) and (b). 

Figure 5 shows the evolution of C ( n )  obtained numerically for small system sizes 
100 x 100 such as those considered in [3,4]. This graph is quite comparable to the one 
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Figure 5. 
100 x 100. 

Evolution of C(n) obtained from Monte Carlo simulation for small system sizes 

(7~0.50) 

Figure 6. Same as figure 4, for n = 0.5. No more large-scale spatial shuctnre can be seen in 
contmt with lower values of n. 

obtained by Nguyen et al, and indeed suggests the occurrence of a second-order phase 
transition. A more extensive numerical study discussed below will however show that 
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the critical probability rr, seems to decrease systematically with the system size and may 
vanish in the thermodynamic limit, as suggested by Shapir and Wang [5]. The next section 
is devoted to the discussion of the numerical results. 

S Roux and A Coniglio 

6. Numerical results 

We report in this section the results of numerical simulations concerning the transition for 
low H values. 

In order to study the transition at low x values, we considered striplike geometries. As 
a first attempt, we studied strip of moderate size. along the x-axis (up to 500), and length 
along the y-axis (up to 5 x IO’). Unexpectedly, this procedure gave rise to a very noisy 
behaviour of C(H) in the interval 0.03 c x i 0.05. A hint to understand this strange 
property is revealed in figure 7, where we have plotted the evolution of C estimated along 
rows parallel to the x-axis as a function of y. We see that at very large intervals, the system 
oscillates between two states (majority of + sites, and majority of - sites), with transient 
regimes where C is close to 0. The intervals at which the entire width of the system flips 
are very long and very irregular, so that it is very difficult to reach a reliable average data. 

In order to circumvent such a difficulty, we consider another strip geometry where 
L, is very large, and L ,  moderate. However, in this geomehy, the proximity of the 
initial line is crucial. We used this property in the following way: If the transition is of 
second order, with a singular behaviour of the order parameter as C(z) o( (xC - x)p ,  
and a divergence of the parallel correlation length as o( (ir, - HI-”, at threshold, 
ir = x,, we expect that the average C with exhibit a finite-size effect. In fact we 
have used the notation C to note the dependence of the order parameter with rr in an 
infinite system size. Right at threshold, the order parameter will depend explicitly on 

1 .o 

0.8 

0.6 

s 
U 

0.4 

0.2 

0.0 
0 20000 40000 60000 80000 100000 

Y 

Figure 7. Evolution of the order parameter c ( y )  as a function of y?  for a striplie geometry 
L, = 100, L ,  = 50000, and K = 0.04. 
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the system size as a power law. We note c(y), the average of this order parameter 
as a function of the distance y for x = rr.. The power-law dependence can be 
written 

c ( y )  a y-P‘”. ( 17) 

Away from the threshold, such power-law behaviour should be limited to an extent y = <, 
above which either c(y) saturates to C ( x )  for n < rC, or c(y )  vanishes faster than any 
power law if H > H,. 

Figure 8 gives the evolution of c(y) as a function of y for various trial values of x 
ranging from 0.036 to 0.046, and L, = 5 x lo5, L, = 500. We see on the figure that all the 
curves display a marked downward curvature at large y with a very slow decay at smaller y. 
For the smallest values of R, figure 8(b) shows the data with a greater magnification, which 
shows clearly an upward curvature for law y followed by a downward one at larger values. 
From the study of smaller system sizes, say y c 100, we may therefore have estimated the 
critical x, at a value 0.040, but considering larger system sizes indicates xc < 0.036. This 
continuous decrease of the estimate of x,  together with the presence of an inflexion point in 
the evolution of c(y). and the very low value of the ,3/u exponent of (17) suggest that it is 
possible that the transition occurs only at x = 0, for an infinite system size. Numerically, it 
is impossible to reach any definitive conclusion. Our only claim considering the numerical 
data will thus be x, < 0.036 and B/u < 0.04. These results are fully consistent with the 
numerical results of Medma and Kardar [I51 obtained on smaller system sizes. 

In order to shed some light on this curious behaviour, we propose in the next section 
an approximate renormalization argument which suggests the possibility of rc = 0. 

7. An approximate renormalization 

We introduce an approximate computation which suggests that there might be only one 
single stable fixed point = 4 for 0 < R -= 1. 

Let us consider the distribution, f, of a. We introduce the probability pt that 01 is 
positive, i.e. p+  = f(or)da, and similarly, p -  = 1 - pt. The simplifying assumption 
is to state that, apart from a scaling factor, the distribution of negative a is identical to the 
one of the positive a. More precisely, for a > 0, we assume f (-U) = (p-/pt)f(or). 
Furthermore, we will neglect correIations in the values of 01 for neighbouring sites. 

Using these hypotheses, it is simple to carry out the computation of pt(y + I ) ,  as a 
function of pt(y) using (3). The probability that 01 is positive at a distance y +  1 is obtained 
by considering all possible q values of the bonds connecting the site to the two neighbours 
at distance y. For a given configuration the a value at the inspected site is written as the 
sum or the difference of the two a values at the y level. Making use of the assumption 
f(-a) = ( p - / p + )  f (a), it is simple to express the probability that the resulting sum or 
difference is positive. In order to do so, we consider all possible combinations of 01 sign, 
whose probabilities are straightforwardly computed, and thus we are left with computing 
the probability that the sum or the difference of two positive variables diseibuted along the 
same law is positive. The sum is trivially always positive, and the difference is positive 
with probability $. Finally, we obtain 

P’+ = (1 - 7 0 2  (p+2 + P+(l - p + ) )  + %(I - Z ) ( P + ( l  - P+) + ;p+* + +(I - p+)*)  

+ (n)* (p+(l-  P + )  + p + o -  P + ) )  , (18) 
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Figure 8. (a )  Transfer-matix computation of e(y)  as a function of y for various values of x,  
The geometry is strip-like L, = 5 x lo5, and L, = 500. (b) Same as (a) for the smaller values 
of x wi& a magnified c scale. 

Rearranging this sum, the recursion formula reduces to the simple linear expression 

p'+ = 7r + p"( 1 - zjo . (19) 

From this simple recursion, we see that as soon as ir is less than 1, the only fixed point is 
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p+ = 4. However, the time needed to reach this fixed point diverges as K approaches 0. 
In addition, this time may also be underestimated in this computation due to the presence 
of spatial correlations at low x .  

The weakness of this model is mostly apparent for x = 0. In this case, starting from a 
random distribution of a@), the system will evolve to a constant value a(x) = a,,, where 
a0 is nothing but the arithmetic average of the initial ( ~ ( x ) ,  and thus after a transient regime, 
p+ will be either 1 or 0. However, our renormalization gives any p +  as being a fixed point 
in the transformation. One can see in this particular case that the starting hypothesis- 
similarity of f for positive and negative a-is in default. It is, unfortunately, not possible 
to weaken this hypothesis and still preserve the possibility of carrying over the computation 
of p without specifying more precisely the distribution f. 

8. Hierarchical lattice 

Let us now introduce another approach still in the spirit of a real-space renormalization, but 
using a different lattice. 

A hierarchical lattice consists of iterating a simple transformation which turns one bond 
into a small lattice. Upon iteration each bond of the basic lattice is again turned into a small 
lattice itself. We have chosen here as a small lattice four bonds assembled in a diamond 
shape. With such a transformation, the resulting lattice has a dimension equal to two. 

The simplicity of the geometrical construction permits us also to deal with effective 
properties of the system in a simple recursive way, and thus to obtain exact renormalization 
equations. 

The construction of the basic lattice can be decomposed in two steps. First we assemble 
four bonds two by two in series, and then the resulting 'macro-bonds' are connected in 
parallel. It suffices to write down the rules for combining two lattices in series and in 
parallel to obtain the complete renormalization equations. Let ni+ for i = 1,2 be the 
fraction of positive and negative paths in two lattices. If we connect the two lattices in 
series, the resulting nL is simply 

n'+ = n:n: + n;n; nb = n:n; + n;n:. 

n'+ - - ?(n: I +n:) n'- = i( n ,  - +n;).  (21) 

(20) 

If we connect two lattices in parallel, then the transformation reads 

From those two transformations it is easy to compute the transformation of (U = 
(n+ - n-): 

If the a were only positive numbers, then we could map exactly this problem onto one 
equivalent to the KPZ equation. We introduce p = log(a). The series transformation (22) 
becomes p' = p1 + p z ,  while the parallel transformation can be written 

6' = Iog(epl + eo2) - log@). (23) 
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As the distribution of ,9 = log@) gets broader while the system size increases, the above 
equation can be simplified to 

S Roux and A Coniglio 

B' = max(b1 I Bz) - Iog(2). (24) 

The addition of the constant term in the latter equation can be interpreted as a steady drift 
term which can be subtracted off through a redefinition of ,3 -+ B + n log(2), where n is 
the generation. This does not affect the scaling properties of the fluctuations of B .  The 
series and parallel transformation thus becomes simply a sum and a maximum operation 
on B .  This is precisely the way one usually models the distribution of energy of a directed 
polymer in a disordered media at zero temperature on a hierarchical lattlce (see, for exampie, 
[9,17]). Therefore one recovers essentially the results introduced in section 3, using a very 
different route. 

However, the above argument cannot be simply obtained in the case where the a can as- 
sume positive or negative values. The problem does not come from taking the logarithm of 
a. This can indeed be adjusted by considering the distribution of positive a and negative a 
separately. In particular for the case ir = 0.5 these two distributions are identical, and thus 
the only modification is in (23) where one may have to consider the case of a minus sign be- 
tween the two exponentials. This again can be simplified by factorizing out the exponential 
of the largest 

The main limitation comes from a pathology of the hierarchical lattice. Considering 
(22), there is a finite probability to encounter a = 0. For small lattices ths probability is 
large, and, in  fact, it very quickly converges to one. Let us introduce f(a), the statistical 
distribution of a, and q = f(0). The probability that after a series transformation 01 = 0 is 
simply q' = 2q - q2. For a parallel transformation, q' = f(a)f(-a)da. Extracting the 

in the argument of the logarithm and thus one gets the result (24) again. 
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Figure 9. Variance of the distribution of p', oa = (p") - (p')'. on the hierarchical lattice 3s a 
function Of the system size L = T, where n is the generation of lhe lattice. The dotted line has 
a slope 2b = 1. 
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Figure 10. (a)  Distributions f of the positive a,  for various generations n = 4 to 8 on the 
hierarchical lattice, using R = 0.5. (b )  Rescaled distributions l o g ( f ) / L  versus log(cf)/L, for 
the five sizes considered in figure IO(=). 

value a = 0 from the latter integral, we obtain a simple lower bound q' > q2. Therefore, 
after one generation, q is turned into q" which is bounded by q" > q2(2-q)'. Assuming that 
q is large enough after a few generations (what is observed numerically) then q converges 
to 1 faster than an exponential. An exponential convergence is obtained in the case of an 
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equality instead of an inequality. 
This dominant role played by a = 0 has the major consequence of controlling the scaling 

of the variance of log(lal), as well as the shape of the distrhtion f itself. Considering 
the distribution of positive a ,  we see that the series transformation is reduced to the 
multiplication of two a’s, or the sum of two p’s, whereas the parallel transformation on 
the same part of the distribution is dominated by the addition of one a with 0, divided by 
two. Thus the parallel transformation is a mere translation by a factor of log(2), whereas 
the series transformation gives rise to a normal distribution of p or log-normal distribution 
of a as a consequence of the central limit theorem. As a result of this degeneracy, the 
scaling of the variance of p is that of the sum of independent random variables, i.e. b = 
in the notations of (12). Figure 9 shows such an evolution for n = $ from direct numerical 
simulation of the distributions f with the lattice generation (up to the 8th generation). In 
figure 10(a), we show the distribution of the positive a in a log-log plot, for different 
generations from 4 to 8. A rescaling of the distribution by l i L  gives the Gaussian limit 
(independent of L )  expected from the above argument. The rescaling shown in figure 10(b) 
is in good agreement with this conclusion. 

For small values of n ,  there seems to be a clear sign of transition to a regime where all 
a have the same sign, and where simultaneously, f(0) converges to zero. This regime now 
simply gives rise to the scaling of the directed polymers as shown above. However, this 
transition is also very sensitive to the particular geometry of the hierarchical lattice, because 
of the particular role played by a = 0. We have not investigated in detail the sensitivity of 
this transition with respect to the numerical discretization of the distribution f, which is a 
necessary step in the numerical simulation of this problem. 
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9. Conclusions 

We have studied the problem of the interference of directed path on a disordered lattice 
with a simple bimodal distribution of bonds (v = il). We have shown in a direct way the 
connection of this problem with the Kardar-Parisi-Zhang equation, as first suggested by 
Medina et a[ 121. We have discussed the transition to a majority of paths sharing the same 
sign, and suggested that this transition may vanish in the thermodynamic limit as initially 
suggested in [5,13,14]. We have also shown that the same problem studied on a hierarchical 
lattice gives rise to a pathological behaviour for intermediate n values, due to the dominant 
role of an exactly balanced number of positive and negative paths. However, for low i~ 
values, a mapping onto a directed polymer in random media at zero temperature has been 
obtained. This problem belongs to the same class of universality as the Kardar-Parisi- 
Zhang equation, and thus it provides an independent confirmation of the above-mentioned 
result. 
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